
Client-Site Query Extensions
Tobias Mayr

Cornell University
4104 Upson Hall
Ithaca, NY 14853
+1 (607) 255-9537

mayr@cs.cornell.edu

Praveen Seshadri
Cornell University
4108 Upson Hall
Ithaca, NY 14853
+1 (607) 255-1045

praveen@cs.cornell.edu
ABSTRACT
We explore the execution of queries with client-site user-
defined functions (UDFs). Many UDFs can only be
executed at the client site, for reasons of scalability,
security, confidentiality, or availability of resources. How
should a query with client-site UDFs be executed? We
demonstrate that the standard execution technique for
server-site UDFs performs poorly. Instead, we adapt well-
known distributed database algorithms and apply them to
client-site UDFs. The resulting query execution techniques
are implemented in the Cornell Predator database system,
and we present performance results to demonstrate their
effectiveness. We also consider the question of query
optimization in the context of client-site UDFs. The known
techniques for expensive UDFs are inadequate because they
do not take the location of the UDF into account. We
present an extension of traditional ’System-R’ optimizers
that suitably optimize queries with client-site operations.

Keywords
Distributed Query-Processing, User-Defined-Functions,
Client-Site Extensions.

1. INTRODUCTION
Optimization techniques have been studied thoroughly for
object-relational SQL queries with expensive user-defined
functions (UDFs). The assumptions made in these studies
are that (a) the UDF’s cost is known a priori before its
location in the plan is determined, (b) the cost is modeled
on a per-tuple basis. These assumptions implicitly presume
that the user is extending the server with a new function.
However, experience with object-relational databases
shows that extending the database server is difficult even
for experienced programmers, and impossible for large
numbers of non-expert users. In large-scale environments
like the WWW, users need to incorporate client-site UDFs

into SQL queries run at a server. Consider the following
motivating example:

A DBMS offers stock market data to its clients over the
WWW. The users connect to the database to analyze the
performance of companies and to extract the necessary
information about prospective candidates for their
investments. Sophisticated investors will have their own
local collections of analysis algorithms and underlying
data that must be integrated into the process of choosing
and retrieving the desired information.

Client-site UDFs integrate this user-specific functionality
with the DBMS’ query processing. Figure 1 shows an
example query that uses such UDFs.

SELECT S.Name, S.Report
FROM StockQuotes S
WHERE S.Change / S.Close >= 0.1 AND
 ClientAnalysis(S.Quotes) > 500

Figure 1: Use of a Client-Site UDF

The investor requests names and financial reports of
companies that accord to her criteria. The first predicate,
filtering companies on a 10%+ uptick, can be expressed
with simple SQL predicates and will be executed on the
server. However, the second predicate involves a UDF that
is executed on the client site.

Such client-site UDFs need to be supported for reasons of
confidentiality, security, scalability, and the availability of
client-specific resources:

a) The investor's analysis UDFs are valued assets that are
ideally not revealed.

b) The UDFs may not be trusted by the server. In earlier
work [GMHE98], we showed that the server can trust
UDFs written in Java to a certain extent, and we are
developing further protection mechanisms [CSM98].
However, the security demands of the server constrain
the UDFs. Further, many UDFs are not written in Java,
and if these are allowed to run at the server, they could
compromise its integrity.

c) In the context of such expensive operations, there is a
serious scalability concern, since resource-intensive
UDFs of many users would together degrade the server
performance.

d) The UDFs may use data that resides exclusively on the
client. This data may only be available in a client-

specific representation, or it might represent
confidential information.

In our research, the UDFs and their client-site execution
environment were implemented in Java. However, there are
many other architectural frameworks and distributed
implementation models, like CORBA, DCOM, or
JavaBeans, that we could have chosen instead, and to which
our research results apply.

For the rest of this paper, we will assume that the network
connecting the clients with the server forms the bottleneck
of client-site UDF execution. This applies for example to
clients connected over the Internet, or over an asymmetric
connection, where only the downlink has high bandwidth
while the uplink will form the bottleneck.

1.1 Summary of Contributions
We believe that client-site UDFs are central to scalable
object-relational applications. Existing query processing
techniques for expensive UDFs are not appropriate for
client-site UDFs. Indeed, the use of traditional approaches
leads to slow and inefficient execution. This can be
explained by three key observations:

a) Client-site UDF execution time can involve network
latency, which needs to be hidden through
concurrency.

b) Client-site UDF performance can depend on the
optimized usage of network bandwidth. Specifically,
the asymmetry between client uplink and downlink
needs to factor into query evaluation decisions. It may
be possible to trade off bandwidth on the uplink for
bandwidth on the downlink.

c) The optimal placement of client-site UDF operators in
the query plan is different from the placement of
expensive server-site UDFs.

The primary contribution of the paper is the development of
techniques to process and optimize queries with client-site
UDFs. These techniques blend object-relational query
processing with the distributed database algorithms.
Specifically, our research makes the following
contributions:

1. We develop efficient execution algorithms for client-
site UDFs, and describe their implementation.

2. We explore the tradeoffs between algorithms due to
asymmetric network connections, and propose options
that save bandwidth on the client’s uplink at the cost of
increased traffic on the downlink.

3. We present a simple cost model that allows us to
determine the optimal choice of the execution
algorithms and their parameters.

4. We present performance results of the prototype
implementation in the Cornell Predator database
system.

5. We develop query optimization techniques for complex
queries with client-site UDFs. The techniques are
extensions of a traditional System-R style optimizer.

Our conclusion is that a database system needs to recognize
the special characteristics of client-site UDFs and apply
appropriate query evaluation and optimization strategies to
such queries.

1.2 Related Work
Our work on queries with client-site UDFs builds on
existing work on expensive UDF execution and distributed
query processing. The main issues are: (a) how should the
UDFs be executed? (b) how should query plans be
optimized?

Client-site UDFs are expensive; they cannot simply be
treated like built-in, cheap predicates. The existing research
on the optimization of queries with expensive server-site
functions is closely related. The execution of UDFs is
considered straightforward; they are executed one at a time,
with caching used to eliminate duplicate invocations. The
process of efficient duplicate elimination by caching has
been examined in [HN97]. Predicate Migration [HS93,
Hel95] determines the optimal interleaving of join operators
and expensive predicates on a join tree by using the concept
of a rank-order on the expensive predicates. The rank of an
operation is determined by its per-tuple cost and its
selectivity. The concept was originally developed in the
context of join order optimization [IK84, KBZ86, SI92].
The Optimization Algorithm with Rank Ordering [CS97]
uses rank order to efficiently integrate predicate placement
into a System-R style optimization algorithm. UDF
optimization based on rank ordering assumes that the cost
of UDF operators is only influenced by the selectivity of the
preceding operators. We show in Section 5 that rank order
does not apply well to client-site operations. Our
optimization algorithm does not rely on it. Another
approach models UDF application as a relational join
[CGK89, CS93] and uses join optimization techniques. Our
approach to optimization takes this route.

There is a wealth of research on distributed join processing
algorithms [SA80, ML86] that our work draws upon. The
distribution of query processing between client and server
has also been proposed independently of client-site UDFs
in [FJK96], as a hybrid between data and query shipping.
Joins with external data sources, specifically text sources,
have been studied in [CDY95]. To avoid the per-tuple
invocation overhead of accessing the text source, a semi-
join strategy is proposed: Multiple requests are batched in a
single conjunctive query and the set of results is joined
internally. Earlier work on integration of foreign functions

[CS93] proposes the use of semantic information by the
optimizer. Our work is complementary in that semantic
information can be used in PREDATOR to transform UDF
expressions [Sesh98]. We consider the execution of queries
after such transformations have been applied.

To summarize, our work is incremental in that it builds
upon existing work in this area. However, the novel aspects
of the work are:

(a) We identify client-site UDFs as an important problem
and adapt existing approaches to fit the new problem
domain.

(b) While earlier work modeled UDFs as joins for the
purpose of optimization, we go further by using join
algorithms also for the purpose of execution.

(c) We identify and exploit important tradeoffs related to
network asymmetry that lead to interesting
optimization choices.

2. Client-Site UDF Execution
In this section we explore different execution techniques for
a single client-site UDF applied to all the tuples of a
relation. For now, we ignore the issue of query optimization
and operator placement. In the first subsection, we expose
the poor performance of a naive approach that treats client-
site UDFs like expensive sever-site UDFs. The next
subsection models UDFs as joins, leading to the
development of evaluation algorithms that are based on
distributed joins.

In our terminology, the input relation consists of argument
columns and non-argument columns. Argument columns
are columns that are arguments to the UDF, like Quote.
Non-argument-columns are for example Report and
Name. We call columns that contain the results of the UDF
application result columns. The input relation can have two
different kinds of duplicates: those which are identical in all
columns, called tuple duplicates, and those only identical in
the argument columns, called argument duplicates. Simple
predicates that rely on the values in the result columns, but
can be executed on the client, for example
ClientAnalysis(S.Quotes)>500, are called
pushable predicates. Similarly, projections that can be
applied immediately after the UDF are called pushable
projections, as in our example the projection on Report
and Name.

2.1 Traditional UDF Execution
Current object-relational databases support server-site
UDFs. It is tempting to treat a client-site UDF as a server-
site UDF that happens to make an expensive remote
function call to the client. If ClientAnalysis were a
server-site UDF, the established approach would be to wait
for results of each UDF invocation before the next record is
processed. This synchronous invocation is based on the

assumption that the UDF execution utilizes the system
reasonably: Under this assumption, concurrency of multiple
invocations would only allow marginal gains. For a client-
site UDF, this assumption is wrong because its execution
time consists mainly of network latency and client-site
processing.
Thus, the encapsulation of the client communication within
a generic black-box UDF makes some optimizations
impossible. On each call to the UDF, the full latency of
network communication with the client is incurred. This is
because most iterator-model execution engines do not apply
one operator of the query plan pipeline to multiple tuples
concurrently. We show the timeline of execution in Figure
2(a).

Server:

Client:

Downlink

Uplink

 UDF

(a)

Server:

Client:

(b)

Figure 2: Timeline of Nonconcurrent and Concurrent
Execution

The key observation here is, that even if the client might not
process multiple tuples concurrently, the network is capable
of accepting further messages while others are already
being transferred. This means that we can keep a number of
messages concurrently in the pipeline that is formed by
downlink, client, and uplink. We refer to this number as the
pipeline concurrency factor. Figure 2(b) shows the timeline
for a concurrency factor of 5.

Another problem of the traditional approach is the
ignorance of network bandwidth. It is possible to vary the
bandwidth usage using different execution techniques.
Consider the UDF in Figure 1: It seems straightforward to
simply send the argument column, Quotes, and receive
back the results. Then the selection,
ClientAnalysis(S.Quotes)>500, can be applied
on the server site. This technique is used for server-site
UDFs. But depending on the networking environment the
resulting performance might be far from optimal. For
example, assume that the client’s uplink turns out to be the
bottleneck, as is the case with modern communication
channels like ADSL, cable modems, and some wireless
networks. We might accept additional traffic on the
downlink if we could in exchange reduce the load on the

uplink. We will explore different execution strategies that
allow these kinds of tradeoffs.

2.2 UDF Execution as a Join
It is possible to model the UDF application on a table as a
join operation: The user defined function in Figure 1 can be
modeled as a virtual table with the following schema:

ClientAnalysis (
 < PriceQuoteArgument :: TimeSeries ,
 Rating :: Integer >)

The PriceQuoteArgument column forms a key, and
the only access path is an “indexed” access on this key
value. Indexed access in this manner incurs costs
independent of the size of the table. UDF execution as a
join with such a UDF table, would work analogously to an
equi-join with a relation indexed on the join columns.

Since UDF application is modeled as a join, client-site UDF
application is accordingly modeled as a multi-site join. We
now examine distributed join algorithms as far as they
apply to this context.

2.3 Distributed Join Processing
There are three standard distributed algorithms
[SA80,ML86] to join an outer relation R and an inner F,
residing on sites S(erver) and C(lient):

• Join at S : Send F to S and join it there with R. Not
feasible for UDFs since the virtual table F cannot be
shipped.

• Join at C : Send R to C and join it there with F.

• Semi-Join : Send a projection of R on its join columns
to C, which returns all matching tuples of F to S, where
they are joined with R.

Identifying S with the server and C with the client, we get
two variants for client-site UDF application from the last
two options. We will briefly introduce each one now, and
go into more detail in the later part of this section.

2.3.1 Semi-Join
Semi-joins are a natural 'set-oriented' extension of the
traditional 'tuple-at-a-time' UDF execution strategy.
Consider the pseudo code below:

For each batch of tuples in R:
 Step 0: Eliminate duplicates
 Step 1: Send a batch of unique
 S.x values to the client
 Step 2: Evaluate UDF(S.x) for all
 S.x values in the batch
 Step 3: Send results back to the
 server
 Step 4: Join each result with the
 corresponding tuples

Note that steps 0 through 4 may be executed concurrently
because they use different resources. If the batch sent in

step 1 consists of only one argument tuple, then this is the
'tuple-at-a-time' approach described in the previous section.
If the entire relation R is sent as a batch we get a classical
semi-join. The details of the different steps vary depending
on the execution strategy. It is convenient to model this
conceptually as below, where the different steps are
identified as components of a pipeline, with the potential
for pipeline concurrency.

Sender

Receiver

Client

Client

Server

Figure 3: Semi-Join Architecture

For server-site UDFs, it is considered acceptable if the
execution mechanism blocks for each UDF call until the
UDF returns the result. However, for client-site UDFs a
large part of the over-all execution time for one tuple
consists of network latencies -- steps 1 and 3 above. We can
ship several tuples on the downlink at the same time while
another tuple is processed by the UDF, and several results
are being sent back over the uplink. Concurrency between
the server, the client, and the network can hide the
latencies. To obtain this goal we will architecturally
separate the sender of the UDF's arguments from the
receiver of its results, and have them and the client work
concurrently. These components form a pipeline, whose
architecture is shown in Figure 3.

The joining of the UDF results with the processed relation
depends in its complexity on the correspondence between
the tuple streams received from the client and from the
sender. If the sender eliminates duplicates, the receiver has
to do an actual join between the two streams. Any join
technique (for example, hash-join) is applicable at the
receiver. If the sender sorts and groups its input on the
argument column before sending it to the client, then the
receiver has to perform a merge-join.

2.3.2 Join at the Client
Join at the client site is possible by sending the entire
stream of tuples from the outer relation to the client. The
UDF is applied to the arguments in each tuple, and the UDF
result is added to the tuple and shipped back to the receiver.
The sender and the receiver of the tuple streams on the
server do not need to coordinate, since the entire tuples
(with duplicates) flow through the client. (as shown in
Figure 4). Note that this does not necessarily mean that the
client makes duplicate UDF invocations: It can cache
results, even with support from the server: The server can
sort the outgoing stream of tuples on the argument
attributes.

An advantage of the client-site join is that pushable
selections and projections can be moved to the client site.
This reduces the bandwidth used on the client-server
uplink. On the other hand, we have to send back the full
records minus applicable projections, and not just results, as
for the semi-join. Considering non-argument columns, more
data is also sent on the downlink. Further, on both downlink
and uplink, the semijoin method eliminates argument
duplicates, whereas the client-site join performs no
duplicate elimination.

U D F E x e c u t io n

C li e n t

S e rv e r

U D F

Figure 4: Client-Site Join Architecture

Duplicates

Duplicates

Duplicates

CSJ

SJ

 SJ
 CSJ

Non-Arguments

Arguments

'RZQOLQN��
�

Duplicates

Duplicates

Duplicates

 Non-Arguments Arguments Results

CSJ

SJ

8SOLQN��
�
�

 SJ

CSJ

Figure 5: Tradeoffs between Client-Site Join and Semi-Join

The difference between semi-join and client-site join is
visualized in Figure 5. The upper graphic shows what is
being sent by each join method; the lower one shows what
is being returned. The horizontals correspond to the
transferred columns while the verticals correspond to rows.
We will quantify and experimentally evaluate these
tradeoffs in the next section.

3. Implementation
We have implemented relational operators that execute
client-site UDFs in the Cornell PREDATOR ORDBMS. All

server components were implemented in C++ and all client-
site components are written in Java. Three different
execution strategies can be used:

a) Naive tuple-at-a-time execution

b) Semi-join

c) Client-site join

We first describe the implementation of the algorithms, and
then compare their performance. Our goals for the
performance evaluation are:

• Demonstrate the problems of the naive evaluation
strategy.

• Show the tradeoffs between semi-join and client-site
join evaluation of the UDF.

3.1 Join Implementation
We will first describe the semi-join implementation, then
discuss how we control concurrency to evaluate the naïve
approach, and finally, we discuss the client-site join.

3.1.1 Semi-Join
This relational operator implements the semi-join of a
server-site table with the non-materialized UDF table on the
client site. In our architecture (see Figure 3), the server side
consists of three components: the sender, the receiver, and
the buffer, with which both communicate records. The
sender gets the input records from the child operators and,
after sending off the argument columns, enqueues them on
the buffer. The receiver dequeues the records from the
buffer and then attempts to receive the corresponding
results from the client. Sender and receiver are
implemented as threads, running concurrently. The buffer
as a shared data structure is needed to keep the full records,
while only the arguments are sent to the client. Also,
records whose argument columns form duplicates of earlier
records have to be joined with cached results at the
receiver.

3.1.2 Concurrency
The size of the buffer that holds records that are between
sender and receiver corresponds to the pipeline
concurrency factor: The number of tuples that are on the
network or the client concurrently. A concurrency factor of
1 corresponds to one-tuple-at-a-time evaluation.

How large should the concurrency factor be? Analytically,
we would expect that the number of records between sender
and receiver should be at least the number of records that
can be processed by the pipeline sender - client - receiver in
the time that it takes for one tuple to pass through this
pipeline. Let B be the bandwidth of the pipeline: the
minimum of the bandwidths of the downlink, the client
UDF processor, and the uplink. Let T be the execution time
of the pipeline: the time that it takes for one argument to
travel to the client, for the result to be computed, and to be

returned to the server. The number of records that can be
processed in this time is simply B * T – the pipeline
concurrency factor that saturates the pipeline.

3.1.3 Client-Site Join
The client-site join uses a variation of this architecture: The
sender dispatches the whole records to the client, which
sends back the records with the additional argument
column. We have the same components as above, but
without the buffer between sender and receiver. The client-
site join does not require any synchronization between both
components, in contrast to the semi-join, where the buffer is
used to synchronize sender and receiver. Prototype
mechanisms allow the server to specify the argument
columns and some simple pushable projections and
selections to the client.

3.2 Cost Model
We show in the performance evaluation section that the
network latency problems of tuple-at-a-time UDF execution
can be solved through concurrency (either semi-join or
client-site join). Consequently, we focus in our cost-model
on these two smarter algorithms. Both algorithms incur
nearly identical costs at the client and on the server. We
assume that neither client nor server is the pipeline
bottleneck, and propose a simple cost model based on
network bandwidth. We do recognize that this is a
simplification and that a mixture of server, client and
network costs may be more appropriate in certain
environments (as was shown for distributed databases
[ML86]). We also ignore the possibly significant cost of
server-site duplicate elimination because the issues are well
understood [HN97] and not central to the algorithms that
we propose.

3.2.1 Cost Model for Semi-Join and Client-Site Join
We now analyze and empirically evaluate the involved
tradeoffs with respect to the factors that were visualized in
Figure 5. To quantify the amount of data sent across the
network, we define the following parameters:

• A : Size of the argument columns / Total size of the

input records

• D : Number of different argument tuples / Cardinality

of the input relation

• S : Selectivity of the pushable predicates

• P : Size of output record after pushable projections /
Size of output record before

• I : Size of one input record

• R : Size of one UDF result

• N : Asymmetry of the network: (bandwidth of the

downlink / bandwidth of the uplink.)

On a per-tuple basis, a semi-join will send the (duplicate
free) argument columns:

D * (A * I) (semi-join, data on downlink,
per record)

The client will return the results without applying any
selections or projections:

N * D * R (semi-join, data on uplink, per record)
The client-site join will send the full input records, without
eliminating duplicates:

I (client-site join, data on downlink,
per record)

The client will return the received records, together with the
UDF results, after applying pushable projections and
selections:

N * (I+R) * P * S (client-site join, data on uplink,
per record)

The bandwidth cost incurred at the bottleneck link is the
maximum of the costs incurred at each link. N, the network
asymmetry weights these costs in the direct comparison.
The link with maximum cost will be the link whose used
bandwidth is closer to its capacity and who will thus
determine the turnaround for the join execution.

4. Performance Measurements
We present the results of four experiments: First, we
demonstrate the problems of the naive approach by
measuring the influence of the pipeline concurrency factor.
The next two experiments show the tradeoffs between semi-
join and client-site join on a symmetric and an asymmetric
network. Finally we show these tradeoffs in their
dependence on the size of the returned results for different
selectivities.

Our results show that client-site joins are superior to semi-
joins for a significant part of the space of UDF applications.
Performance improvements are derived by exploiting the
tradeoffs between both join methods, especially in the
context of asymmetric networks.

All of our experiments were executed with the server
running on a 300Mhz Pentium PC with 130 Mbytes of
memory. The client ran as a Java program on a 150Mhz
Pentium PC with 80 Mbytes of memory, connected over a
28.8KBit phone connection. The asymmetric network was
modeled on a 10Mbit Ethernet connection by returning N
times as many bytes as actually stated.

4.1 Concurrency
We evaluated the effect of the concurrency factor on
performance for the following simple query:

SELECT UDF(R.DataObject) FROM Relation R

Relation is a table of 100 DataObjects, each of the
same size. UDF is a simple function that returned another
object of the same size.

Figure 6 gives the overall execution time of the query in
seconds, plotted against the concurrency factor (number of
records in the downlink-client-uplink pipeline) on the x-
axis, for object sizes 100, 500, and 1000 bytes.

Our analysis suggested that the optimal concurrency factor
is bandwidth times latency: the number of tuples that can be
processed concurrently while one tuple travels through the
whole pipeline. Following our assumption, the network is
the bottleneck and its bandwidth limits the overall
throughput. In this graph, we can observe that the optimal
level for 1000 bytes is reached at 5 and for 500 bytes at 10:
This would correspond to 5000 bytes as the product of
bandwidth and latency. Presumably, for 100 byte object, the
optimal concurrency level would be 50.

0

20000

40000

60000

80000

100000

120000

140000

1 6 11 16

Pipeline Concurrency Factor

M
ill

is
ec

o
n

d
s

100 Bytes 500 Bytes 1000 Bytes

Figure 6: Effect of Concurrency

The presented data were determined with a non-threaded
implementation of the presented architecture: This
facilitates the simple manipulation of the concurrency
factor. All further experiments ran on an implementation
that simply uses different threads for sender and receiver.
Running these as separate threads naturally saturates the
pipeline between them.

4.2 Client-Site Join and Semi-Join on a
Symmetric Network
Our analysis suggests that the uplink bandwidth required by
the client-site join is linear in the selectivity while the
downlink bandwidth is independent of the selectivity. For
the total execution time, this means that as long as the
downlink is the bottleneck, selectivity will have no effect,
but when the uplink becomes the bottleneck, the execution
time will increase linearly with selectivity. The semi-join is
not affected by a change in selectivity.

We measured the overall execution time for the query in
Figure 7. Relation has 100 rows, each consisting of two
data objects, together of size 1000 bytes. A was fixed at
50%: The Argument and the NonArgument object were
each 500 bytes. The projection factor, P, is adjusted to the
result size, such that: P*(I+R) = I*(1-A)+R, meaning that
no arguments have to be returned by the client-site join,
only the non-argument columns and the results. UDF1 takes
an object from the Argument column and returns true or
false, while UDF2 takes the same object and returns a result
of known size.

SELECT R.Argument, R.NonArgument,
UDF2(R.Argument)
FROM Relation R
WHERE UDF1(R.Argument)

Figure 7: Measured Query

In Figure 8, we plot the overall execution time of the client-
site join relative to that of the semi-join against the
selectivity of UDF1 on the x-axis. Thus, the line at y = 1.0
represents the execution time of the semi-join. We varied
the selectivity from 0 to 1.0 and plot curves for result sizes
100, 1000, 2000, and 5000 bytes. The execution time of a
semi-join is independent of the selectivity because semi-
joins do not apply predicates early on the client. Thus all
client-site join execution time values of one curve are given
relative to the same constant. In this, as in all other
experiments, we set D=1.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Selectivity

R
el

at
iv

e
T

im
e

(C
S

J/
S

J)

100 Bytes 1000 Bytes 2000 Bytes 5000 Bytes

Figure 8: Client-Site Join versus Semi-Join on a Symmetric
Network

We will first discuss the shape of each curve, meaning the
slope of the different linear parts, and then its height. It can
be observed that for each result size the curve runs flat up
to a certain point and from then on rises linearly. For the
flat part of the curve the downlink is the bottleneck of the
client-site join’s execution. Only from a certain selectivity
on will its uplink form the bottleneck and thus determine
the shape of the curve. For result size 1000 bytes, this point
is at selectivity 0.6, when the returned data volume (S *

(P*(I+R)) = 0.6 * 1500) approaches the received data
volume (I = 1000). The larger the result size, the earlier this
point will be reached because the ratio of received to
returned data changes in favor of the latter. The received
data are independent of the selectivities: As long as the
downlink dominates, the curve is constant. The increasing,
right part of the curves is part of a linear function going
through the origin of the graphs: At zero selectivity the
uplink would incur no cost. Its cost is linear in the amount
of data sent on it, which is linear in the selectivity of the
predicate.

The flatness of the left part of each curve is caused by the
dominance of the downlink for such selectivities. Savings
on the uplink cannot lower the execution time any more.
The height of the flat part of the curve reflects the relative
execution time of the semi-join. With larger result sizes the
left part of the curve will run deeper, because of the
relatively higher costs of the up-link dominated semi-join,
compared to the downlink-dominated client-site join. For
example, the curve for 2000 goes flat at 0.5 (1000 bytes on
semi-join downlink / 2000 bytes on client-site join uplink).

4.3 Client-Site Join and Semi-Join on an
Asymmetric Network
In this experiment, we explored the same tradeoffs as above
in a changed setting: The network is asymmetric with the
downlink bandwidth being hundred times as much as that of
the uplink (N=100). This choice was motivated by
assuming a 10Mbit cable connection as a downlink that is
multiplexed among a group of cable customers. With a
28.8Kbit uplink this would result in N = 350 for exclusive
cable access and, as a rough estimate, N = 100 after
multiplexing the 10Mbit cable.

0

0.5

1

1.5

2

2.5

3

3.5

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Selectivity

R
el

at
iv

e
T

im
e

(C
S

J/
S

J)

500 Bytes 1000 Bytes 5000 Bytes

Figure 9: Client-Site Join versus Semi-Join on Asymmetric
Network

The same query as above is executed (Figure 7). The
argument columns consist of 4000 bytes and the non-

argument columns of 1000 (A=80%), and again, only the
non-argument columns and the results are returned after the
pushable projections (P*(I+R)=I*(1-A)+R). The selectivity
is varied along the x-axis from 0 to 1 and we give curves for
result sizes 500, 1000, and 5000 bytes. The relative
execution time of the client-site join with respect to the
semi-join is given in Figure 9.

As our cost model predicts, the bandwidth of the uplink
depends linearly on the selectivity. The flat part of the
curves in the last graph is absent because the downlink
never forms a bottleneck. Our model predicts a selectivity
of less than: I/(N*(I+R)*P) = 0.0083 to make the downlink
the bottleneck of the lowest curve (result size 5000 bytes).

4.4 Influence of the Result Size
Finally, we fixed the selectivity S and varied the result size
R along the x-axis from 0 to 2000 bytes. Four different
curves are shown, for selectivities 25%, 50%, 75%, and
100%. The argument size was 100 bytes; the overall input
size 500 bytes. Again, only non-arguments and results are
returned and, as in the second experiment, the network is
symmetric. The resulting execution times of the client-site
join relative to those of the semi-join are presented in
Figure 10.

0

0.5

1

1.5

2

2.5

3

3.5

0 200 400 600 800 1000 1200 1400 1600 1800 2000

Result Size (Bytes)

R
el

at
iv

e
T

im
e

(C
S

J/
S

J)

0.25 0.5 0.75 1

 Figure 10: Influence of the Result Size

It can be seen that the client-site join will only be cheaper if
the pushable predicates are selective enough to reduce the
uplink stream sufficiently and if the results are large enough
to realize the gain in comparison to the records that have to
be shipped on the downlink. The steep initial decline of the
curve represents the change from a downlink bottleneck to
an uplink bottleneck. While the former is disadvantageous
for the client-site join, the latter emphasizes the role of
pushed down predicates and projections. The crossing
points of the curves with the 1.0 line satisfies, as expected,
that the client-site join’s returned data times the selectivity
are equal to the semi-join’s returned data. The curve for
selectivity 1.0 will never cross that line. The curves

asymptotically approach the horizontal lines that
correspond to their selectivity.

5. Query Optimization
We showed that existing UDF execution algorithms are
inadequate for client-site UDF queries and we proposed
alternatives. Now we show that existing query optimization
techniques are also inadequate. There are two reasons for
this:

(a) Multiple client-site operations can exhibit interactions
that affect their cost. Even for plans with a single
client-site UDF these interactions are relevant, because
the result operator of every plan, which ships the
results to the client, should modeled like a client-site
“output” UDF.

(b) The cost of the client-site join is sensitive to the
number of duplicates in its input stream.

The existing approaches rely on the concept of a rank order:
Every operation has a rank, defined as its cost per tuple
divided over one minus its selectivity. Unless otherwise
constrained, expensive operations appear in the plan
ordered by ascending rank. The validity of rank-order
optimization algorithms is based on two assumptions that
are violated by client-site UDFs:

a) The per-tuple execution cost of an operation is known
a priori, independent of its position in the query plan.

b) The total execution cost of an operation is its per-tuple
cost times the size of the input after duplicate removal.
UDFs can be pulled up over a join, without suffering
additional invocations on duplicates in the argument
columns.

Neither assumption is valid for network-intensive client-site
UDFs. The cost of a client-site operation is strongly
dependent on its location next to other such operations with
which it can be combined. And client-site joins as well as
combinations of semi-joins are dependent on the number of
duplicates.

We propose an extension of the standard System-R
optimization algorithm for such queries. As a running
example, we will use the query in Figure 11. A client tries
to find cases in which his analysis results in the same rating
than that of a broker. Ratings contains the ratings of
many companies' stocks by several brokers.

SELECT S.Name, E.BrokerName
FROM StockQuotes S, Estimations E
WHERE S.Name = E.CompanyName AND
 ClientAnalysis(S.Quotes)=E.Rating

Figure 11: Example Query : Placement of Client-Site UDF
ClientAnalysis

5.1 UDF Interactions
It is important to observe that the execution costs of a
client-site UDF depend on the operations executed before
and after it. If a client-site operation's input is produced by
another client-site operation, the intermediate result does
not have to be shipped back to the server. If such operations
share arguments, they can be executed on the client as a
group and the arguments are shipped only once. For
example, a client-site UDF that is executed immediately
before the result operator can be executed together with it,
without ever shipping back its results. We will first discuss
the case of client-site joins, then that of semi-joins.

5.1.1 Client-Site Join Interactions
Consider our example from Figure 11:There are only two
possible orderings of the operators, one executing the
client-site function before the join, one after it. In the latter
case there are three different options. We describe all four
plans in more detail and give possible motivations:

a) UDF before the join: The result of the UDF can be
used during the join, for example, to use an index on
Rating. This also avoids duplicates that the join
might generate.

b) UDF after the join: The number of tuples and/or the
number of distinct argument tuples in the relation
might be reduced by the join.

c) UDF and pushable operations after join: If the UDF
uses the client-site-join algorithm, the selection can be
pushed down to the client site, reducing the size of the
result stream. Further, projections may also be pushed
to the client. In this example, only Name and
BrokerName of the selected records are returned to
the server.

d) UDF combined with result delivery: For many queries,
the results need to be delivered to the client. Since
there is no other server-site operation between the UDF
and the final result operator, the UDF with the
pushable operations can be executed in combination
with the final operator. This avoids the costs of
returning intermediate results from the client and also
the costs of shipping the final results.

It can be seen that the locations of UDFs in the query plan
(a vs. b) determines the available options for
communication cost optimizations: The cost of a UDF
application is dependent on the operators before and after
it! These locations and the locations of pushable predicates
need special consideration during plan optimization.
Similar observations can be made about semi-joins, which
we consider in the following section.

5.1.2 Semi-Join Interactions
Semi-joins differ from client-site joins in their interactions:
Neither the final result operator, nor pushable selections or

projections are relevant for grouping. There are three
motivations for grouping semi-joins:

• The result of one client-site UDF is input to another.
This avoids sending the results back on the uplink and
transferring them, with the other arguments of the
second UDF, on the downlink. The superset of the
arguments is sent to the first and only duplicates on this
superset are eliminated.

• The arguments of one function are a subset of the
arguments of another. This saves the costs of sending
the subset twice, but implies transferring all duplicates
that are not also duplicates in all of the superset’s
columns.

• The argument coulumn sets of two functions intersect.
In this case it can be that we save communication costs
when sending the superset instead of the two subsets.
We avoid sending columns repeatedly, but we also
have to consider the cost of sending the duplicates on
each subset that are not duplicates on the whole
superset.

As an example, consider the query in Figure 11 with an
additional expression in the select clause:
Volatility(S.Quotes, S.FuturePrices). The
client requests an estimation of the price volatility for the
company stocks selected in the query, as computed by the
client-site UDF.

The first two options are extensions of client-site join
option (a), while the last two are extensions of (b) and (c):

a) Volatility is pushed down to the location of
ClientAnalysis, so that both can be executed
together: The columns Quotes and Futures are
shipped once for both UDFs. This saves shipping
Quotes twice, but it does not allow the elimination of
all duplicates in this column. Identical quotes that are
paired with different Futures objects have to be
shipped several times. In this plan,
ClientAnalysis does not benefit from the join’s
selectivity, Volatility waives both the join’s and
the selection’s selectivities.

b) ClientAnalysis is executed before the join, for
example, because its result is used for index access to
Estimates. Volatility is executed after the last
selection, to benefit from combined selectivity. It is not
joined with the result operator as a client-site join
because then its arguments would have to be sent with
duplicates.

c) If ClientAnalysis is moved after the join, it can
be executed together with Volatility. Both benefit
from the join’s selectivity, while the duplicates
generated by the join in both needed input columns can

be eliminated. Again, the input of ClientAnalysis
might involve some duplicates.

d) To avoid all duplicates on Quotes,
ClientAnalysis is executed separately, with the
selection pushed down. Volatility is also not
merged with the result operator, to avoid duplicates in
its input columns.

5.2 Optimization Algorithm
We start by presenting the basics of System-R style
optimization with standard extensions for expensive server-
site UDFs. Then we present our modifications for dealing
with client-site UDFs using client-site joins and semi-joins.

5.2.1 System-R Optimizer
System R [S+79] uses a bottom-up strategy to optimize a
query involving the join of N relations. Three basic
observations influence the algorithm:

• Joins are commutative

• Joins are associative

• The result of a join does not depend on the algorithm
used to compute it.

Consequently, dynamic programming techniques may be
applied.

Initially, the algorithm determines the cheapest plans that
access each of the individual relations. In the next step, the
algorithm examines all possible joins of two relations and
finds the cheapest evaluation plan for each pair. In the next
step, it finds the cheapest evaluation plans for each three-
relation join. With each step, the sizes of the constructed
plans grow, until finally we have the cheapest plan for a
join of N relations. At each step, the results from the
previous steps are utilized.

This last of the above three observations is not totally
justified, because the physical properties of the result of a
join can affect the cost of some subsequent joins (thereby
violating the dynamic programming assumptions that allow
expensive plans to be pruned). The System R optimizer
deals with this by maintaining the cheapest plan for every
possibly useful interesting property, thereby growing the
search space.

5.2.2 Client-Site Join Optimization
We aim at defining an optimization algorithm that can
handle queries with client-site UDFs. Our strategy is to treat
client-site UDFs in the same way as join operators in the
System R optimization algorithm. A comparable approach
has been followed in the case of expensive UDFs [CGK89],
but for client-site operations we also have to consider the
physical location of operations (like [FJK96][SA80]).

Our running example will be the construction of the optimal
plan for the query in Figure 11, as executed by our

optimization algorithm The steps of the algorithm, are
shown as horizontal layers in Figure 12.

We introduce a new bi-valued physical property, a plan’s
site, indicating the location of its result. In a server-site plan
(cornered boxes), the last applied operation is executed on
the server and thus the result is located on the server. In a
client-site plan (round boxes), the result is located on the
client. As an example for a client-site plan, take the plan
that applies ClientAnalysis on relation S, resulting in
a relation residing on the client. Joining S with E forms a
server-site plan because the result of the join resides on the
server.

S E

S,E

S,CA

S,E,CA,Sel

S,CA,E,Sel

Final Plan

Final Plan

S,E

Step 1

Step 2

Step 3

Step 4

Figure 12: Client-Site Join Optimization of the Query in
Figure 11

When applying the next operation to a plan, the optimizer
has to determine the communication costs with respect to
the plan’s site. A join (performed on the server) applied on a
client-site plan requires that the records are shipped from
the client to the server, while a client-site function applied
on a server-site plan requires the opposite. Take the
application of the final result operator to the right plan in
step 3: it will not incur any additional communication costs
because the relation already resides on the client.

A client-site UDF is executed by a join with a given inner
table – the virtual UDF table. To unify our handling of
virtual and real joins we consider joins as operations with a
given inner table. Every relation in the query introduces
such a join operator. In our example we have to consider
three operations: the join with S, the join with E, and the
client-site join with ClientAnalysis. The application
of a real join to a yet empty plan simply results in the base
relation of that join. A virtual join cannot be applied to an
empty plan.

5.2.3 Semi-Join Optimization
For the semi-join UDF optimization we need to capture the
fact that the results of plans after a semi-join are distributed
between client and server. To do so, we introduce locations
for each column of the intermediate results as physical
properties. As an example consider again the plans for the
query of Figure 11, extended with

Volatility(S.Quotes, S.FuturePrices) in
the select clause. We show part of the optimization process
in Figure 13, omitting all plans that do not start with the
join of S and E.

The initial plan, S⊗E, can be extended by applying either
ClientAnalysis or Volatility. Each client-site
UDF can deliver its result column and its argument columns
on the client site, available for any further operation. If
Volatility is applied first, ClientAnalysis can
follow without shipping its arguments because its
arguments are already on the client. The application of
Volatility after ClientAnalysis, on the left side
of the tree, cannot use the Quotes column on the client:
Duplicates were eliminated on it that were originally paired
with different FuturePrices values. Everything has to
be shipped back to the server before the adequate columns
can be transferred. Similarly, server-site operations, like the
selection, always ship everything back to the server before
their execution.

S,E,Vol,
CA,Sel

∅ S,E,CA,
Sel,Vol

Quotes,
FPrices,
Vol

S,E,CA,
Vol,Sel

∅

S,E,
CA,Vol

Quotes,
FPrices,
Vol

S,E,
CA,Sel

∅S,E,
Vol,CA

Quotes,
FPrices,
Vol, CA

S,E,CA
Quotes,
CA

S,E ∅

S,E,Vol
Quotes,
FPrices,
Vol

Step 1

Step 2

Step 3

Step 4

Figure 13: Semi-Join Optimization for the Query in
Figure 11

5.2.4 Features of the Optimization Algorithm
The key characteristics of the optimization algorithm are:

• For query nodes that apply client-site UDFs, additional
physical properties are introduced: the location of the
optimized subplan's result, and the subset of its
columns that resides on the client

• The number of joins in the plan is 2(#joins+#c.s.udfs), that
is, the algorithm is exponential in the number of real
joins plus the number of client-site UDFs.

• Simple, pushable selections and projections are not
modeled as operations, although they are, where
possible, pushed to the client.

• Grouping of client-site operations, motivated by shared
arguments or by result dependencies, is integrated in a
uniform way, using the location property.

6. Conclusions
Client-site query extensions (UDFs) will play an
increasingly important role in extensible database systems
due to scalability, confidentiality, and security issues. We
demonstrate that existing UDF evaluation and optimization
algorithms are inappropriate for client-side UDFs. We
present more efficient evaluation algorithms, and we study
their performance tradeoffs through implementation in the
Cornell PREDATOR database system. We also present a
query optimization algorithm that handles the client-site
UDFs appropriately and finds an efficient query plan.

Acknowledgements

This work on the Cornell Jaguar project was funded in part
through an IBM Faculty Development award and a
Microsoft research grant to Praveen Seshadri, through a
contract with Rome Air Force Labs (F30602-98-C-0266)
and through a grant from the National Science Foundation
(IIS-9812020). We would like to thank Philippe Bonnet for
his helpful advice on the final draft of this paper.

%LEOLRJUDSK\
[CDY95] S.Chaudhuri, U.Dayal, T.Yan. Join Queries with

External Text Sources: Execution and
Optimization Techniques. In Proceedings of the
1995 ACM-SIGMOD Conference on the
Management of Data. San Jose, CA.

[CGK89] D.Chimenti, R.Gamboa, and R.Krishnamurthy.
Towards an Open Architecture for LDL. In
Proceedings of the International VLDB
Conference, Amsterdam, August 1989.

[CS93] S.Chaudhuri and K.Shim. Query Optimization in
the Presence of Foreign Functions. In
Proceedings of the 19th International VLDB
Conference, Dublin, Ireland, August 1993.

[CS97] S.Chaudhuri and K.Shim. Optimization of
Queries with User-Defined Predicates.
Technical Report MSR-TR-97-03, Microsoft
Research, 1997.

[CSM98] G.Czajikowski, P.Seshadri, and T.Mayr.
Resource Control for Database Extensions.
Submitted for Publication. 1998.

[FJK96] Michael J. Franklin, Björn Þór Jónsson, Donald
Kossmann: Performance Tradeoffs for Client-
Server Query Processing. In Proceedings of the
1996 ACM-SIGMOD Conference on the
Management of Data, pages 149-160.

[GMHE98] M.Godfrey, T.Mayr, P.Seshadri, and T. von
Eicken. Secure and Portable Database
Extensibility. In Proceedings of the 1997 ACM-
SIGMOD Conference on the Management of
Data, pages 390-401, Seattle, WA, June 1998.

[Hel95] J.M.Hellerstein. Optimization and Execution
Techniques for Queries with Expensive
Methods. PhD thesis, University of Wisconsin,
Madison, May 1995.

[HN97] J.M.Hellerstein and J.F.Naughton. Query
Execution Techniques for Caching Expensive
Methods. In Proceedings of the 1997 ACM-
SIGMOD Conference on the Management of
Data, pages 423-434, Tucson, AZ, May 1997.

[HS93] J.M.Hellerstein and M.Stonebraker. Predicate
Migration: Optimizing Queries with Expensive
Predicates. In Proceedings of the 1993 ACM-
SIGMOD Conference on the Management of
Data, Washington, D.C., May 1993.

[IK84] T. Ibaraki and T. Kameda: On the Optimal
Nesting Order for Computing N-Relational
Joins. TODS 9(3): 482-502. 1984.

[KBZ86] R.Krishnamurti, H.Boral, and C.Zanialo.
Optimization of Nonrecursive Queries. In
Proceedings of the International VLDB
Conference, Kyoto, Japan, August 1986.

[ML86] L.F.Mackert, G.M.Lohman. R* Optimizer
Validation and Performance Evaluation for
Distributed Queries. In Proceedings of the
International VLDB Conference, pages 149-159,
Kyoto, Japan, August 1986.

[Sesh98] Praveen Seshadri. Enhanced Abstract Data
Types in Object-Relational Databases. VLDB
Journal 7(3): 130-140 (1998).

[SA80] Patricia G. Selinger, Michel E. Adiba: Access
Path Selection in Distributed Database
Management Systems. ICOD 1980: 204-215.

[SI92] A.Swami and B.R.Iyer. A Polynomial Time
Algorithm for Optimizing Join Queries. ICDE
1993: 345-354.

[S+79] P.G.Selinger, M.M.Astrahan, D.D.Chamberlin,
R.A.lorie, and T.G.Price. Access Path Selection
in a Relational Database Management System.
ACM SIGMOD 1979, p.23-34, Boston, MA,
USA, June 1979.

